Multiplicity of solutions for homogeneous elliptic systems with critical growth
نویسندگان
چکیده
منابع مشابه
Multiplicity of positive solutions for critical singular elliptic systems with sign - changing weight function ∗
In this paper, the existence and multiplicity of positive solutions for a critical singular elliptic system with concave and convex nonlinearity and sign-changing weight function, are established. With the help of the Nehari manifold, we prove that the system has at least two positive solutions via variational methods.
متن کاملMultiplicity of Positive Solutions for Semilinear Elliptic Systems
and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملExistence of solutions for elliptic systems with critical Sobolev exponent ∗
We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.
متن کاملMultiplicity of solutions for a fourth order elliptic equation with critical exponent on compact manifolds
This work deals with a perturbation of the so called prescribed scalar Q-curvature type equations on compact Riemannian manifolds; these equations are fourth order elliptic and of critical Sobolev growth. Sufficient conditions are given for having at least two distinct solutions. c © 2006 Elsevier Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2012
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.07.001